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Changes in Peripheral Refraction, Higher-Order Aberrations,
and Accommodative Lag With a Radial Refractive Gradient

Contact Lens in Young Myopes

Jaume Pauné, M.Sc., Solène Thivent, M.Sc., Jesús Armengol, Ph.D., Lluisa Quevedo, Ph.D.,
Miguel Faria-Ribeiro, M.Sc., and José M. González-Méijome, Ph.D.

Purpose: To evaluate changes in the peripheral refraction (PR), visual
quality, and accommodative lag with a novel soft radial refractive gradient
(SRRG) experimental contact lens that produces peripheral myopic defocus.
Methods: 59 myopic right eyes were fitted with the lens. The PR was
measured up to 30° in the nasal and temporal horizontal visual fields and
compared with values obtained without the lens. The accommodative lag
was measured monocularly using the distance-induced condition method at
40 cm, and the higher-order aberrations (HOAs) of the entire eye were
obtained for 3- and 5-mm pupils by aberrometry. Visual performance
was assessed through contrast sensitivity function (CSF).
Results: With the lens, the relative PR became significantly less hyperopic
from 30° to 15° temporally and 30° nasally in the M and J0 refractive
components (P,0.05). Cylinder foci showed significant myopization from
30° to 15° temporally and 30° to 25° nasally (P,0.05). The HOAs
increased significantly, the CSF decreased slightly but reached statistical
significance for 6 and 12 cycles per degree (P,0.05), and the accommo-
dative lag decreased significantly with the SRRG lens (P¼0.0001). There
was a moderate correlation between HOAs and CSF at medium and high
spatial frequencies.
Conclusion: The SRRG lens induced a significant change in PR,
particularly in the temporal retina. Tangential and sagittal foci changed
significantly in the peripheral nasal and temporal retina. The decreased
accommodative lag and increased HOAs particularly in coma-like aberra-
tion may positively affect myopia control. A longitudinal study is needed to
confirm this potential.
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M yopia should no longer be considered simply as a refractive
error.1 Myopic eyes are prone to several ocular pathologies

such as retinal degeneration and glaucoma.2 Myopia should be
viewed as a progressive condition associated with the potential risk
of vision loss. Moreover, the prevalence of myopia is increasing in
Asian urban regions where 80% of teenagers are myopic.3 Myopia
management has a high impact on public health, and finding effec-
tive strategies to slow myopia progression should be a priority.
A variety of optical devices and visual strategies have been

developed to address central vision but with a reduced or limited
effect. For example, undercorrection actually increases the rate of
myopia progression.4–6 Bifocal and multifocal lenses have a limited
effect.7 Some studies have shown promising results in children
with rapid myopia progression, with higher success in patients with
esophoria at near and higher accommodative lag (LAG).8 Under-
accommodation, that is, LAG, is quantified as the difference
between the dioptric level of the accommodative stimulus and
the measured accommodative response. Larger LAG, in associa-
tion with near work, which induces retinal blur at near, has been
proposed as a factor in myopia development and progression.9

Although progressing myopes show larger LAG,10 attempts to
slow myopia progression through plus lens correction at near to
reduce or eliminate near vision blur have obtained only modest
results in children.11 Otherwise, a recent study related retinal supe-
rior myopic defocus induced by progressive addition lenses with
less central myopia progression.12

Orthokeratology (OK) is currently the most effective optical
method to slow myopia progression.13–17 Several authors have
shown the great impact of OK on the peripheral retinal image,18,19

with movement of the peripheral image shell forward, which was
described as the cause of the myopia control effect.20 Peripheral
hyperopic refraction is believed responsible for myopia develop-
ment, as the ocular growth mechanism tries to compensate for the
imposed peripheral defocus with further elongation even in the
presence of a perfectly focused central image.21,22 There has been
more interest in peripheral refraction (PR) after animal studies
showed an emmetropization response to specific visual manipula-
tion, with myopia being the result of both spatial form deprivation
and imposed hyperopic defocus.23 The peripheral retina itself can
recover or induce myopia,24,25 especially in monkeys, indicating
that the emmetropization process may be controlled actively by the
optically modified peripheral image.26 Myopic eyes have greater
relative peripheral hyperopia,27–29 a characteristic that appears
approximately 2 years before the onset of myopia.30
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Despite evidence in animals, unfortunately, some studies in
humans have shown that baseline PR does not predict or play
a significant role in the subsequent onset of myopia or affect
myopia progression.31,32 Indeed, it had been proposed that the
peripheral error profiles in myopes may merely be a consequence
of ocular growth rather than have a causative role.33 However,
some correlation between changes in PR and central shift has been
found in the nasal visual field,34 and stable and progressing myopes
showed significantly different characteristics in their peripheral
retinal shape and astigmatic components of tangential and sagittal
power errors.35

Another theory for myopia onset is related to optical higher-
order aberrations (HOAs). Some investigators have tried to gain an
understanding of the role of optical quality changes by OK in
reducing the rate of axial growth. Eyes with less axial elongation
over the treatment period showed a greater increase in coma-like
aberrations.36 Despite the authors’ statement, that study did not link
both findings. Other HOAs, especially spherical aberration (SA),
have been related to LAG. When the eye is choosing the best
image plane,37 myopes generally are less sensitive to negative than
positive defocus, which can be linked to their HOA pattern.38

According to the peripheral hyperopic defocus theory for
myopia control, several approaches have used soft contact lenses
with modified optics to change the PR and the myopia progression
was arrested by 34%39 to 50%.40 A more recent study related the
treatment effect with wearing time.41 Analyses of the optics of the
monofocal and bifocal lenses42,43 and related PR changes have
been reported,44 but no studies have shown in the effects of such
lens designs on LAG, HOAs, and PR. Contact lenses with radial
refractive gradient are able to change the peripheral refractive pat-
tern. However, they also impact the pattern of HOAs and, by virtue
of the changes in the plane of the best image with regard to the
retina, the accommodative lag could change. According to the
current knowledge, both paths could interfere with the myopia
development. Furthermore, as HOAs have the potential to
adversely affect the image quality, it is necessary to ensure that
this does not impact significantly the visual quality assessed by the
contrast sensitivity function (CSF).
The aim of this study was to simultaneously evaluate the effect

of a soft radial refractive gradient (SRRG) contact lens devised to
change the PR on accommodative lag, whole eye HOAs, and
contrast sensitivity in a population of young myopes. To our
knowledge, this is the first study to address these 3 important
factors of the theories and justify optically guided regulation of
ocular growth in one study.

METHODS

Sample
Sixty-two subjects were recruited from the student population at

the Terrassa School of Optics and Optometry (Universitat Poli-
tècnica de Catalunya, Terrassa, Spain). After 3 subjects were
excluded because of contact lens decentration, 59 subjects (29
men and 30 women) were evaluated. The inclusion criteria were
myopia with a spherical equivalent (SE) refraction ranging from
20.50 to 27.50 diopters (D) (mean6standard deviation [SD],
22.4461.71 D) and refractive astigmatism below 20.75 D
(20.1960.33 D), age between 18 and 25 years, and a best-
corrected visual acuity of 20/20 or higher. The exclusion criteria

were any ocular disease or use of any systemic or ocular medica-
tion that could affect the refractive error or accommodative func-
tion. Subjects were required to understand and sign a consent form
before study enrollment. The Ethical Committee of Clinical
Research of the Centro Medico Teknon, Barcelona, Spain,
approved the study protocol, which adhered to the tenets of the
Declaration of Helsinki.

Lens
An experimental SRRG contact lens designed to produce

peripheral myopic defocus was fitted after a baseline measure
was obtained without refractive correction. The lens is comprised
of 2-hydroxyethyl methacrylate, with 38% water content (overall
diameter, 14.00–15.00 mm; base curve radius, 8.00–8.90 mm).
The central thickness varied depending on the optical power of
the lens.
The optical design of the experimental lens used parameters for

theoretical eyes obtained from Atchison45 that were incorporated
into the Zemax-EE software version 6 (Radiant Zemax, Red-
mond, WA). The experimental lens has a unique central front
and back aspheric optic zone 8 mm in diameter. The lens has
a radial refractive gradient, so only the central apical zone has the
power required for distance vision, and the aspheric design pro-
vides a progressive increasing add power, starting at the central
geometric point and providing a +2.00 D add plus power 1.9 mm
from the center (3.80-mm chord diameter) corresponding to
approximately 30 degrees of retinal eccentricity and achieving
approximately +9.5 D at the edge of the optical zone (8-mm
chord diameter). The contact lens was fitted according to the
subjective refraction, corneal curvature, and visible iris diameter.
The corneal topography was measured using the Pentacam (Ocu-
lus, Wetzlar, Germany). Adjustments to the final prescription
were based on spherical overrefraction, and a new lens was
ordered if discrepancies over 60.25 D occurred. Fitting was as-
sessed for centration on lateral gaze movements using the sli-
tlamp beam. All lenses were within the desired limits of less
than 0.25 to 0.50 mm of decentration on blink in upgaze and
0.50- to 1.00-mm displacement during horizontal excursion on
lateral gaze. These values are considered acceptable good fitting
parameters for modern soft contact lenses.46 During the study
visit, the lenses were allowed to settle for 20 to 30 min to equil-
ibrate and stabilize on the ocular surface and for subjects to feel
sufficiently comfortable to undergo the examination. Measure-
ments were obtained without correction for PR and aberrations
and with the best spectacle correction in a trial frame at 12 mm
for CSF.

Peripheral Refraction
Measurements of the central and peripheral (off-axis) refraction

were obtained with an open-field Grand Seiko Auto-Refractometer/
Keratometer WAM-5500 (Grand Seiko Co, Ltd, Hiroshima, Japan)
up to 30° in the nasal and temporal horizontal retina in 5-degree
steps. This instrument and its other commercial brand that uses the
same technology for refractive error measurement (Shin-Nippon)
have been used reliably for foveal47,48 and PR measurements.49,50

In this study, a laser system was mounted on the subject’s head and
aligned with the central fixation point in primary gaze. The PR was
measured with head rotation to ensure that the lens did not move
from the resting position in primary gaze. To measure head
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rotation, the laser had to coincide with a series of markings on the
wall 2.5 m in front of the subject. This created a limitation on the
range of field measured, making it measurable up to 30°. The left
eye was occluded during the measurements to avoid misalignments
under binocular fixation. Measurements were conducted under
noncycloplegic conditions. Descriptive statistics (mean6standard
deviation) were calculated for the refraction vector components as
SE, M¼Sph+Cyl/2, horizontal component of astigmatism,
J0¼2Cyl$cos(2a)/2, and oblique component of astigmatism,
J45¼2Cyl$sin(2a)/2 according to Fourier analysis, as recommen-
ded by Thibos et al.,51 where Sph, Cyl, and a are the manifest
sphere, cylinder, and axis, respectively. M, J0, and J45 were cal-
culated from the mean clinical refraction resulting from 5 consec-
utive readings obtained at each visual field eccentricity and were
considered for statistical analysis. The relative peripheral refractive
error was calculated by subtracting the central M, J0, or J45 value
obtained at the fovea from that obtained at each eccentric retinal
location. Sagittal and tangential foci were calculated according to
the following equations: Fs¼M2J0 and Ft¼M+J0. Peripheral
measurements were performed using the pupillary center for
alignment.

Accommodation Lag
The accommodation lag was measured monocularly in the right

eye using the Grand Seiko WAM-5500 autorefractor through the
SRRG lens at distance and near for a target consisting of a line of
a high-contrast reading card of 20/40 letters. The near stimulus was
placed at 40 cm, which represents a 2.50 D accommodative demand.
The letter size at near was changed to keep the visual angle the same
as the target at 2.50 meters. The luminance was 20 cd/m2 for both
targets. Five readings were measured in each position, and during
the measurements the subject fixated on one letter target. The sphere
and cylinder were recorded for each measurement, and then the
mean SE for the set of measurements was calculated. The accom-
modation lag was calculated by subtracting the mean measured
accommodative response from far to near SE and then subtracting
it from the accommodative stimulus following the procedures
described by He et al.52 Sustained accommodative effort has been
suggested as a potential etiological factor for myopia progression.53

Optical Quality and Visual Performance
The optical quality of the eye was assessed using an Irx3

Hartmann-Shack aberrometer (Imagine Eyes, Orsay, France).
Higher-order aberrations from the third to sixth order were
obtained in dim light conditions under natural mydriasis with
a 5-min adaptation time to assure the largest natural pupil.
Additionally, a limitation for 3- and 5-mm pupillary sizes was
done using the software in the instrument. Changes in the root
mean square (RMS) from baseline without the lens for spherical-
like HOAs (including Zernike polynomials Z4

0 and Z6
0), coma-like

HOAs (including Zernike polynomials Z3
21, Z3,1 Z5

21, and Z5
1),

trefoil (including Zernike polynomials Z3
23, Z3

3), secondary astig-
matism (including Zernike polynomials Z4

22, Z4,2 Z6
22, and Z6

2),
and total HOAs were considered for statistical analysis.
Visual performance was assessed through the CSF using a CVS-

1000 E (VectorVision, Dayton, OH) for spatial frequencies of 1.5,
3, 6, 12, and 18 cycles/degree (c/d) with the patient at 3 meters
under photopic (105 cd/m2) and low mesopic (0.6 cd/m2)
conditions.

The visual acuity was measured with the Logarithmic 2000
series Early Treatment Diabetic Retinopathy Study chart at 4
meters (Precision Vision, La Salle, IL).

Statistical Analysis
The SPSS software package version 19 (SPSS Inc., Chicago, IL)

was used for statistical analysis. The Kolmogorov–Smirnov test
was applied to evaluate the normality of the data distribution.
The paired Student t test or Wilcoxon signed-rank test for two
related samples was used to analyze the statistical significance of
the differences between contact lenses versus baseline depending
on the normal or nonnormal distribution. The Pearson or the Spear-
man rho correlation tests was also used to determine the relation-
ship between aberrations and CSF. P,0.05 was considered
statistically significant.

RESULTS

Relative Peripheral Refraction
The relative peripheral refractive error mean values expressed as

M, J0, J45, sphere, and cylinder, respectively, underwent signif-
icant changes with the lens in place compared with baseline.
Significant changes were observed from 30 to 15° temporally and
30° nasally in the M value. J0 showed significant changes from 30
to 20° temporally and 30° nasally (with a significantly opposed
value at 15° nasally) and any of all J45 values was significant
(Figs. 1, 2). Looking at both astigmatic foci (sagittal and tangen-
tial), we observed that the lens significantly changes the peripheral
astigmatic refraction toward more myopia in the temporal retina
(from 30° to 15° in the temporal retina and from 30° to 25° in the
nasal retina) (Fig. 3). The sagittal focus remains hyperopic for most
of the peripheral visual field even while the lens is worn.
Significantly different values from 30° to 20° in the temporal

retina were found for sphere foci. Cylinder foci were significant

FIG. 1. Relative peripheral refractive error (peripheral minus center)
in mean spherical equivalent values (M) as a function of angle in the
temporal retina (negative values) and nasal retina (positive values)
across 70 degrees of the horizontal visual field. Experimental con-
ditions are represented without the lens (♦) and with the radial
refractive gradient (n) lens. The bars represent the standard error of
the mean, half of that is suppressed and a polynomial function of
second degree was fitted for each experimental situation for a better
interpretation of the refractive profile across the horizontal visual
field. The black dots indicate the locations with significant (P,0.05)
differences. SRRG, soft radial refractive gradient; WL, without lens.
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from 30° to 15° temporally and from 30° to 25° in the nasal retina
(with a significantly opposed value at 10° nasally). Myopization
increased with eccentricity in these values that corresponded to the
difference without lenses and with the experimental contact lens
used in the study. Table 1 shows the specific values.

Visual Acuity and Contrast Sensitivity Function
Comparison of the visual acuity with and without lenses showed

no significant difference in either condition (P.0.0999), indicating
that the experimental lenses showed no effect on visual acuity.
The CSF differed significantly in the 6 c/d frequency under

photopic conditions, with a loss of 20.0860.25 (log) with the
experimental lens (P,0.05). The scotopic conditions resulted in
a significant sensitivity loss at 6 and 12 c/d (mean difference,
20.1560.25, P,0.05 and 20.1460.29, P,0.05 log units,
respectively).

Aberrations
All HOAs, including trefoil, coma-like, SA, and secondary

astigmatism, increased with the SRRG lens compared with no lens
(P,0.05). This effect was particularly marked for the 5-mm pupil-
lary size rather than the 3-mm pupils. Significant differences were
seen with the SRRG lens for the 3-mm pupil compared with

baseline and for the 5-mm pupil (P,0.05, for all orders of aber-
ration). The third (Z3

1 and Z3
21) and spherical-like RMS (Z4

0 and
Z6

0) showed the largest differences (Fig. 4).

Spherical Aberrations and Contrast Sensitivity
Function Relations
We obtained negative significant correlations between SA and

CSF at 3-mm pupil diameter for the following spatial frequencies:
3 c/d (r¼ 20.308; P,0.05), 6 c/d (r¼20.545; P,0.001), 12 c/d
(r¼ 20.495; P,0.001), and 18 c/d frequency (r¼ 20.420;
P,0.005). For secondary astigmatism, we found a weak negative
significant correlation (r¼20.281; P,0.05). Under 5-mm pupil
conditions, results showed significant negative correlations for all
the CSF frequencies: 3 c/d (r¼ 20.371; P,0.05), 6 c/d
(r¼20.423; P,0.005), 12 c/d (r¼20.463; P,0.001), 18 c/d
(r¼20.478; P,0.0001), and SA. Coma-like HOAs showed signif-
icantly negative correlations for 6 and 12 c/d (r¼20.347; P,0.05
and r¼20.377; P,0.005) and secondary astigmatism for the fre-
quencies of 12 and 18 c/d (r¼20.369; P¼0.008 and r¼20.311;
P,0.05), respectively.

Accomodation Lag
With the lens on the eye, the accommodative lag decreased

significantly (P¼0.0001) compared with no lens. The mean values

FIG. 2. Relative peripheral J0 (A) and J45 (B) for both experimental
conditions, without the lens (♦) and with the SRRG lens (n). The bars
represent the standard error of the mean, half of which have been
eliminated for clarity and a polynomial function of second degree
was fitted for each experimental situation for a better interpretation
of the refractive profile across the horizontal visual field. The black
dots indicate the locations with significant (P,0.05) differences.
SRRG, soft radial refractive gradient.

FIG. 3. Relative peripheral sagittal foci and tangential foci for both
experimental conditions without the lens (♦) and with the SRRG lens
(n). The bars represent the standard error of the mean, half of which
have been eliminated for clarity and a polynomial function of second
degree was adapted for each experimental situation for a better
understanding. The black dots indicate the locations with significant
(P,0.05) differences. SRRG, soft radial refractive gradient.
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with and without the lens were 0.3760.42 and 0.6460.28 D,
respectively. The difference between the mean values
(0.2860.40 D) was larger than the minimal detectable difference
in clinical circumstances. Figure 5 represents the correlation
between accommodative lag and axial myopia under both experi-
mental conditions (without and with contact lens).

DISCUSSION
The experimental SRRG contact lens modified the peripheral

refractive shell profile by moving it forward in the young myopic
eyes in this study. A study of a large sample of children with
myopia reported a mean of +0.8061.29 D for the relative hyper-
opic relative PR at 30° in the temporal peripheral retina.54 There-
fore, the change we found in the M value of21.07 D at 30° axis in
the peripheral temporal retina (nasal visual field) may be sufficient
to modify the position of the image shell, placing it in front of the
retina in the average eye.
We observed significant differences through the naked eye and

when the SRRG lens was worn in the SE value measurements at

30°, 25°, 20°, and 15° in the temporal retina but only at 30° in the
nasal retina. Figure 1 shows the mean6SD relative peripheral SE at
each retinal location. One reason for this result may be related to
a normal tendency for soft lenses to move temporally off-center in
addition to the nasal position of the visual axis with respect to the
optical axis (angle kappa). Wolffsohn et al.46 reported a mean lens
decentration of 0.0760.14 mm horizontally (temporal) compared
with the center of the cornea, and Dominguez-Vicent et al.55 re-
ported a displacement of the axis due to the angle kappa of
0.4360.13 mm using the Orbscan (Bausch & Lomb, Rochester,
NY). The sum of the 2 accounts for the temporal position of the
optical center of the lens with respect to the optical axis, which
may correspond to a 6- to 10-degree axis error depending of the
eye model used.56–58 In other words, usually a progressive center
distance soft lens induces more addition power on the temporal
retina because of this decentration effect and might explain the
bigger effect of the temporal retina also reported previously.39,59,60

Moreover, a recent study of new soft contact lens for designed
myopia control evaluated a lens with a decentered optical zone that
was shifted 0.5 mm nasally from the geometrical center of the lens

TABLE 1. Relative Peripheral Refractive Error (Peripheral Defocus Minus Central Defocus) as Spherical Equivalent Values (M6SD), Cylinder Power
Set at Orthogonally 90˚ and 180˚ Meridians (J06SD), Representing Cartesian Astigmatism

RPRE M J0

Location

WL SRRG

Sig (p)

WL SRRG

Sig (p)Mean6SD Mean6SD Mean6SD Mean6SD

30T 20.2960.93 21.3461.05 0.001 21.1460.44 21.5960.58 0.001
25T 20.3360.69 21.1060.77 0.001 20.8460.36 21.1560.41 0.001
20T 20.3560.57 20.7960.73 0.001 20.5460.38 20.7660.48 0.002
15T 20.3160.41 20.5360.69 0.019 20.4060.23 20.4060.45 0.955
10T 20.1560.37 20.2260.51 0.217 20.1660.20 20.1360.36 0.526
5T 20.0760.27 20.0660.50 0.840 20.0360.19 20.0360.31 0.966
5N 20.0360.22 20.0760.47 0.491 20.0360.15 0.0260.31 0.324
10N 20.0560.31 20.0160.46 0.527 20.0160.26 0.0560.34 0.262
15N 20.0560.33 0.0560.70 0.211 20.1960.34 0.0260.47 0.003
20N 0.0760.27 0.0860.77 0.879 20.2760.29 20.1560.46 0.089
25N 0.0860.63 20.0360.80 0.148 20.4360.30 20.4760.46 0.537
30N 0.1360.75 20.1061.11 0.047 20.6060.39 20.7660.54 0.041

RPRE J45 Fs Ft

Location

WL SRRG

Sig (p)

WL SRRG

Sig (p)

WL SRRG

Sig (p)Mean6SD Mean6SD Mean6SD Mean6SD Mean6SD Mean6SD

30T 20.1360.42 20.1960.47 0.393 0.8560.75 0.2461.04 ,0.001 21.4461.25 22.9661.32 ,0.001
25T 20.1160.28 20.1460.36 0.551 0.5160.58 0.0360.88 ,0.001 21.1860.94 22.2760.83 ,0.001
20T 20.0760.26 20.0960.35 0.652 0.1960.63 20.0560.87 0.015 20.8960.73 21.5760.85 0.001
15T 20.0860.22 20.0860.24 0.824 0.0960.40 20.1460.97 0.077 20.7160.53 20.9560.61 0.008
10T 20.0460.22 20.0360.24 0.900 0.0260.38 20.1160.71 0.178 20.3260.45 20.3860.51 0.367
5T 0.0160.11 20.0160.24 0.529 20.0460.36 20.0560.67 0.965 20.1060.29 20.1160.48 0.880
5N 20.0360.16 20.0260.24 0.726 0.0060.28 20.1260.66 0.241 20.0560.26 20.0860.41 0.694
10N 20.0460.27 20.0160.35 0.639 20.0460.40 20.0860.58 0.608 20.0560.40 0.0260.57 0.269
15N 20.0160.33 20.0860.40 0.201 0.1460.59 0.0260.87 0.265 20.2560.51 0.0560.83 0.005
20N 20.0760.27 20.0560.39 0.662 0.3460.61 0.2260.97 0.328 20.2160.66 20.0960.81 0.311
25N 20.0660.28 20.1460.38 0.136 0.5160.64 0.4360.88 0.388 20.3560.75 20.5260.96 0.078
30N 20.0660.32 20.1660.38 0.078 0.7260.80 0.6461.16 0.589 20.4760.89 20.8861.30 0.003

Negative values of J0 indicate against-the-rule astigmatism; positive values of J0 indicate with-the-rule astigmatism. Oblique astigmatism
(J456SD), referred to a cross-cylinder set at 45˚ and 135˚, refractive sphere foci (Sph6SD) and cylinder refractive foci (Cyl6SD) representing
the foci of the sum of sphere plus negative cylinder. Sagittal foci (Fs) and tangential foci (Ft) are related to relative peripheral astigmatic
components at 90˚ and 0˚.

Negative values of Ft indicate forward vertical foci position related to Fs foci. Values are expressed in diopters (D).

p represents the value of statistical significance according to Paired Sample t test. Bold indicates statistically significant power difference
compared with central point (95% confidence interval).

N, nasal side of retina; RPRE, relative peripheral refractive error; SRRG, soft radial refractive gradient; T, temporal side of retina; WL, without lens.
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to be coincidental with the optical center of the lens with the
pupillary center. The results on myopia control with this lens did
not reach significance, perhaps because of the lower peripheral
progressive addition of +0.50 D.61 A possible misallocation error
due to the head of the patient when looking at the fixation point
could be avoided by turning the eye only, as a recent study62 has
shown that, when two multifocal lenses were tested in the horizon-
tal visual field, values did not change significantly when measured
during rotation of the eye or head.
The nasal half of the retina may be more important regarding the

mechanism of ocular growth control because Faria-Ribeiro et al.35

reported a difference between a progressing group and a nonprog-
ressing group of young myopic subjects; the patients in the pro-
gressing group experienced more hyperopic relative astigmatic
defocus than the nonprogressing group in the nasal retina. If the
peripheral retina is responsible for the ocular growth changes, the
relationship between the blur for the “tangential” and “radial” neu-
rons may control growth.38 The blur detected for these neurons
differs because of oblique astigmatism, which places the foci lines
close to the vertical and horizontal meridians.63 In this sense, we

found a significant difference in the astigmatic component J0 but
not in J45 such as that seen in Figure 2A, B, respectively.
In the peripheral retina, oblique astigmatism increases and

produces two main foci lines. This has been calculated for our
patients by obtaining the sagittal and tangential foci. Similar results
have been found recently in OK patients, particularly in lower
myopes.64 Howland proposed that astigmatism acts as a unique
visual cue to detect the position of the foci with respect to the
retina,65 but its role on axial elongation of the eye remains unclear.
Adding to this uncertainty is the potential effect of different types
of off-axis astigmatism on the central refraction.1,66 However, in
the presence of two focal lines, the retina tends to use the more
myopic plane of the two lines to guide eye growth. In monkeys
treated with dual-focus lenses, refractive development was domi-
nated by the more anterior (i.e., relatively myopic) image plane. In
this respect, a series of studies have shown that myopic defocus
seems to have a stronger effect on ocular growth than hyperopic
defocus.67 The results in monkeys with imposed dual-focus lenses
showed that imposing relative myopic defocus directed refractive
development in most cases toward the more myopic/less hyperopic
focal plane (i.e., the more anterior focus).68 This seems to agree
with the results found in OK where myopization effect is mainly
obtained at the expense of the tangential focus.64 Otherwise, if the
more emmetropic astigmatic plane is preferred, the consolidated
efficacy of OK to regulate myopia progression69 could not be
justified.
We need to be aware that a decentered optical zone may increase

optical multifocality because this places in front of the pupil
different power zones of the lens that increase aberrations, mainly
coma. In this study, we found that the lens significantly increased
the coma-like, spherical-like, secondary astigmatism, and total
HOAs. We reported similar results with a previous soft peripheral
gradient design using the same concept.70 According to another
previous experiment that we conducted, the design of the current
lens manufactured with a rigid gas-permeable material caused even
stronger changes in peripheral myopization.71 Among them, the
coma-like aberration showed a greater change. However, the
potential involvement of coma-like aberrations as a regulatory
effect over ocular elongation that has been suggested36 remains
to be demonstrated.
Regarding contrast sensitivity, the experimental lens signifi-

cantly decreased CSF under photopic conditions only at the 6 c/d
frequency and worsened all the studied frequencies under scotopic
conditions, except for 18 c/d, which remained unchanged.
Accordingly, this SRRG treatment lens degrades the foveal image
especially in dim light. Nonetheless, because the visual acuity was
measured under photopic conditions and for high contrast charts,
we did not observe a decrease in this metric. We found a significant
negative correlation between the SA and CSF without lenses at 6,
12, and 18 c/d in 3- and 5-mm pupils but no correlation between
the HOAs induced by the lens and CSF. This may be related to
a particular change in the HOAs for each individual. Moreover, it
may suggest that the associated reduction in image quality may
promote axial myopia in a way similar to form deprivation, which
is a graded phenomenon.72 However, the results of animal studies
with multifocal or dual-focus lenses indicated that despite a result-
ing reduction in image contrast the lenses slow axial grow.73

Finally, we found a significant reduction in accommodation lag
when patients were evaluated with the experimental soft contact

FIG. 5. Accommodative lag with and without the SRRG lens. Two
regression lines are plotted. The dotted line represents no lens, and
the dashed line represents the experimental lens. SRRG, soft radial
refractive gradient.

FIG. 4. Higher-order aberrations without the lens and with the
experimental SRRG lens expressed as trefoil, spherical-like aberra-
tions, coma-like aberrations, secondary astigmatism, and HOA for
3- and 5-mm pupillary sizes. HOA, higher-order aberration; SRRG,
soft radial refractive gradient; WL, without lens.
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lens (Fig. 5). In fact, some studies have shown that induced
changes in ocular SA by OK decrease the accommodation lag,37

in contrast with other investigators who found no change74 possibly
because of different methodology.
Lead and accommodation lag of accommodation are affected by

ocular HOAs, with significant correlations with the peak of the
visual Strehl ratio based on the modulation transfer function.75 It
seems plausible that the higher accommodation lag seen in myopes
provided optimized retinal image characteristics.76 Visual contrast
is greater when Zernike coefficients Z2

0 and Z4
0 of the eye and lens

system have opposite signs. A positive SA present in myopia con-
trol treatments such as OK and radial refractive gradient lenses
combined with myopic blur has the potential to reduce the accom-
modation lag placing the best plane image in front of the retina.38,77

Because the amount of positive SA declines with accommodation
and becomes steadily more negative with further accommoda-
tion,78 the increase in positive SA with the current lens may protect
against negative SA and hyperopic blur that will situate the best
plane image behind the retina, resulting on a higher accommoda-
tion lag and worsening the peripheral defocus.77 A limitation of this
study was that we did not measure the SA under accommodation to
validate this theory.
High accommodation lag is considered a factor in the patho-

genesis of myopia because of the association between myopia
progression and near work.79 Further analyses with progressive
addition and bifocal spectacle lenses that potentially reduce the
defocus at near showed larger treatment effects in individuals with
larger accommodation lag in combination with near esophoria.80,81

However, larger accommodation lag has been linked to develop-
ment82 and progression of myopia.83 Although there is no unani-
mous agreement across studies, some have indicated a tendency for
myopic children to have a larger accommodation lag compared
with emmetropes.80,52 However, hyperopic defocus from accom-
modation lag, therefore, may be more of a consequence than a cause
of myopia.83

In conclusion, the SRRG contact lenses showed potential to
change significantly the PR in the myopic direction, particularly in
the temporal retina. Furthermore, the accommodation lag was
decreased with the experimental lens. Both factors might be effective
to interfere with regulation of axial elongation in myopic eyes,
without significant visual compromise as observed by visual acuity
and CSF. However, a longitudinal study is needed to clarify the effect
of all those factors and their relative weight in myopia progression.
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